### Refine

#### Document Type

- Doctoral Thesis (32) (remove)

#### Keywords

- Optimierung (5)
- Schätzung (3)
- Stichprobe (3)
- Amtliche Statistik (2)
- Approximation (2)
- Erhebungsverfahren (2)
- Familienbetrieb (2)
- Finanzierung (2)
- Maschinelles Lernen (2)
- Regressionsmodell (2)

#### Institute

- Fachbereich 4 (32) (remove)

Many combinatorial optimization problems on finite graphs can be formulated as conic convex programs, e.g. the stable set problem, the maximum clique problem or the maximum cut problem. Especially NP-hard problems can be written as copositive programs. In this case the complexity is moved entirely into the copositivity constraint.
Copositive programming is a quite new topic in optimization. It deals with optimization over the so-called copositive cone, a superset of the positive semidefinite cone, where the quadratic form x^T Ax has to be nonnegative for only the nonnegative vectors x. Its dual cone is the cone of completely positive matrices, which includes all matrices that can be decomposed as a sum of nonnegative symmetric vector-vector-products.
The related optimization problems are linear programs with matrix variables and cone constraints.
However, some optimization problems can be formulated as combinatorial problems on infinite graphs. For example, the kissing number problem can be formulated as a stable set problem on a circle.
In this thesis we will discuss how the theory of copositive optimization can be lifted up to infinite dimension. For some special cases we will give applications in combinatorial optimization.

Structured Eurobonds - Optimal Construction, Impact on the Euro and the Influence of Interest Rates
(2020)

Structured Eurobonds are a prominent topic in the discussions how to complete the monetary and fiscal union. This work sheds light on several issues going hand in hand with the introduction of common bonds. At first a crucial question is on the optimal construction, e.g. what is the optimal common liability. Other questions that arise belong to the time after the introduction. The impact on several exchnage rates is examined in this work. Finally an approximation bias in forward-looking DSGE models is quantified which would lead to an adjustment of central bank interest rates and therefore has an impact on the other two topics.

External capital plays an important role in financing entrepreneurial ventures, due to limited internal capital sources. An important external capital provider for entrepreneurial ventures are venture capitalists (VCs). VCs worldwide are often confronted with thousands of proposals of entrepreneurial ventures per year and must choose among all of these companies in which to invest. Not only do VCs finance companies at their early stages, but they also finance entrepreneurial companies in their later stages, when companies have secured their first market success. That is why this dissertation focuses on the decision-making behavior of VCs when investing in later-stage ventures. This dissertation uses both qualitative as well as quantitative research methods in order to provide answer to how the decision-making behavior of VCs that invest in later-stage ventures can be described.
Based on qualitative interviews with 19 investment professionals, the first insight gained is that for different stages of venture development, different decision criteria are applied. This is attributed to different risks and goals of ventures at different stages, as well as the different types of information available. These decision criteria in the context of later-stage ventures contrast with results from studies that focus on early-stage ventures. Later-stage ventures possess meaningful information on financials (revenue growth and profitability), the established business model, and existing external investors that is not available for early-stage ventures and therefore constitute new decision criteria for this specific context.
Following this identification of the most relevant decision criteria for investors in the context of later-stage ventures, a conjoint study with 749 participants was carried out to understand the relative importance of decision criteria. The results showed that investors attribute the highest importance to 1) revenue growth, (2) value-added of products/services for customers, and (3) management team track record, demonstrating differences when compared to decision-making studies in the context of early-stage ventures.
Not only do the characteristics of a venture influence the decision to invest, additional indirect factors, such as individual characteristics or characteristics of the investment firm, can influence individual decisions. Relying on cognitive theory, this study investigated the influence of various individual characteristics on screening decisions and found that both investment experience and entrepreneurial experience have an influence on individual decision-making behavior. This study also examined whether goals, incentive structures, resources, and governance of the investment firm influence decision making in the context of later-stage ventures. This study particularly investigated two distinct types of investment firms, family offices and corporate venture capital funds (CVC), which have unique structures, goals, and incentive systems. Additional quantitative analysis showed that family offices put less focus on high-growth firms and whether reputable investors are present. They tend to focus more on the profitability of a later-stage venture in the initial screening. The analysis showed that CVCs place greater importance on product and business model characteristics than other investors. CVCs also favor later-stage ventures with lower revenue growth rates, indicating a preference for less risky investments. The results provide various insights for theory and practice.

Die vorliegende Arbeit liefert eine Kritik der Performativity-of-Economics-Debatte, welcher theoretische Probleme unterstellt werden. Dies betrifft insbesondere Defizite hinsichtlich einer handlungstheoretischen Erschließung und Erklärung ihres Gegenstandes.
Zur Überwindung dieses Problems wird eine Verknüpfung mit dem Mechanism Approach der analytischen Soziologie vorgeschlagen, welcher erstens einen explizit handlungstheoretischen Zugang bietet, zweitens über die Identifikation der zugrundeliegenden sozialen Mechanismen die Entschlüsselung sozialer Dynamiken und Prozesse erlaubt und, drittens, verschiedene Ausprägungen des zu untersuchenden Phänomens (die Performativität ökonomischer Theorien) in Theorien mittlerer Reichweite übersetzen kann. Eine Verbindung wird durch den Mechanismus der Self-fulfilling Theory als spezifische Form der Self-Fulfilling prophecy hergestellt, welche im weiteren Verlauf der Argumentation als Erklärungsinstrument des Mechanism Approach verwendet und dabei kritisch reflektiert wird.
Die handlungsbasierte Erklärung eines spezifischen Typs der Performativität ökonomischer Theorien wird schließlich anhand eines Fallbeispiels – dem Aufstieg und der Verbreitung des Shareholder-Value-Ansatzes und der zugrundeliegenden Agency Theory – empirisch demonstriert. Es kann gezeigt werden, dass mechanismenbasierte Erklärungen zur allgemeinen theoretischen Aufwertung der besagten Debatte beitragen können. Der Mechanismus der Self-fulfilling Theory im Speziellen bietet zur Erklärung des untersuchten Phänomens verschiedene Vor- und Nachteile, kann allerdings als eine theoretische Brücke ebenfalls einen fruchtbaren Beitrag leisten, nicht zuletzt indem er eine differenzierte Betrachtung des Zusammenhangs zwischen starken Formen von Performativität und selbsterfüllenden Prophezeiungen erlaubt.

A basic assumption of standard small area models is that the statistic of interest can be modelled through a linear mixed model with common model parameters for all areas in the study. The model can then be used to stabilize estimation. In some applications, however, there may be different subgroups of areas, with specific relationships between the response variable and auxiliary information. In this case, using a distinct model for each subgroup would be more appropriate than employing one model for all observations. If no suitable natural clustering variable exists, finite mixture regression models may represent a solution that „lets the data decide“ how to partition areas into subgroups. In this framework, a set of two or more different models is specified, and the estimation of subgroup-specific model parameters is performed simultaneously to estimating subgroup identity, or the probability of subgroup identity, for each area. Finite mixture models thus offer a fexible approach to accounting for unobserved heterogeneity. Therefore, in this thesis, finite mixtures of small area models are proposed to account for the existence of latent subgroups of areas in small area estimation. More specifically, it is assumed that the statistic of interest is appropriately modelled by a mixture of K linear mixed models. Both mixtures of standard unit-level and standard area-level models are considered as special cases. The estimation of mixing proportions, area-specific probabilities of subgroup identity and the K sets of model parameters via the EM algorithm for mixtures of mixed models is described. Eventually, a finite mixture small area estimator is formulated as a weighted mean of predictions from model 1 to K, with weights given by the area-specific probabilities of subgroup identity.

Estimation and therefore prediction -- both in traditional statistics and machine learning -- encounters often problems when done on survey data, i.e. on data gathered from a random subset of a finite population. Additional to the stochastic generation of the data in the finite population (based on a superpopulation model), the subsetting represents a second randomization process, and adds further noise to the estimation. The character and impact of the additional noise on the estimation procedure depends on the specific probability law for subsetting, i.e. the survey design. Especially when the design is complex or the population data is not generated by a Gaussian distribution, established methods must be re-thought. Both phenomena can be found in business surveys, and their combined occurrence poses challenges to the estimation.
This work introduces selected topics linked to relevant use cases of business surveys and discusses the role of survey design therein: First, consider micro-econometrics using business surveys. Regression analysis under the peculiarities of non-normal data and complex survey design is discussed. The focus lies on mixed models, which are able to capture unobserved heterogeneity e.g. between economic sectors, when the dependent variable is not conditionally normally distributed. An algorithm for survey-weighted model estimation in this setting is provided and applied to business data.
Second, in official statistics, the classical sampling randomization and estimators for finite population totals are relevant. The variance estimation of estimators for (finite) population totals plays a major role in this framework in order to decide on the reliability of survey data. When the survey design is complex, and the number of variables is large for which an estimated total is required, generalized variance functions are popular for variance estimation. They allow to circumvent cumbersome theoretical design-based variance formulae or computer-intensive resampling. A synthesis of the superpopulation-based motivation and the survey framework is elaborated. To the author's knowledge, such a synthesis is studied for the first time both theoretically and empirically.
Third, the self-organizing map -- an unsupervised machine learning algorithm for data visualization, clustering and even probability estimation -- is introduced. A link to Markov random fields is outlined, which to the author's knowledge has not yet been established, and a density estimator is derived. The latter is evaluated in terms of a Monte-Carlo simulation and then applied to real world business data.

This dissertation is dedicated to the analysis of the stabilty of portfolio risk and the impact of European regulation introducing risk based classifications for investment funds.
The first paper examines the relationship between portfolio size and the stability of mutual fund risk measures, presenting evidence for economies of scale in risk management. In a unique sample of 338 fund portfolios we find that the volatility of risk numbers decreases for larger funds. This finding holds for dispersion as well as tail risk measures. Further analyses across asset classes provide evidence for the robustness of the effect for balanced and fixed income portfolios. However, a size effect did not emerge for equity funds, suggesting that equity fund managers simply scale their strategy up as they grow. Analyses conducted on the differences in risk stability between tail risk measures and volatilities reveal that smaller funds show higher discrepancies in that respect. In contrast to the majority of prior studies on the basis of ex-post time series risk numbers, this study contributes to the literature by using ex-ante risk numbers based on the actual assets and de facto portfolio data.
The second paper examines the influence of European legislation regarding risk classification of mutual funds. We conduct analyses on a set of worldwide equity indices and find that a strategy based on the long term volatility as it is imposed by the Synthetic Risk Reward Indicator (SRRI) would lead to substantial variations in exposures ranging from short phases of very high leverage to long periods of under investments that would be required to keep the risk classes. In some cases, funds will be forced to migrate to higher risk classes due to limited means to reduce volatilities after crises events. In other cases they might have to migrate to lower risk classes or increase their leverage to ridiculous amounts. Overall, we find if the SRRI creates a binding mechanism for fund managers, it will create substantial interference with the core investment strategy and may incur substantial deviations from it. Fruthermore due to the forced migrations the SRRI degenerates to a passive indicator.
The third paper examines the impact of this volatility based fund classification on portfolio performance. Using historical data on equity indices we find initially that a strategy based on long term portfolio volatility, as it is imposed by the Synthetic Risk Reward Indicator (SRRI), yields better Sharpe Ratios (SRs) and Buy and Hold Returns (BHRs) for the investment strategies matching the risk classes. Accounting for the Fama-French factors reveals no significant alphas for the vast majority of the strategies. In our simulation study where volatility was modelled through a GJR(1,1) - model we find no significant difference in mean returns, but significantly lower SRs for the volatility based strategies. These results were confirmed in robustness checks using alternative models and timeframes. Overall we present evidence which suggests that neither the higher leverage induced by the SRRI nor the potential protection in downside markets does pay off on a risk adjusted basis.

Data used for the purpose of machine learning are often erroneous. In this thesis, p-quasinorms (p<1) are employed as loss functions in order to increase the robustness of training algorithms for artificial neural networks. Numerical issues arising from these loss functions are addressed via enhanced optimization algorithms (proximal point methods; Frank-Wolfe methods) based on the (non-monotonic) Armijo-rule. Numerical experiments comprising 1100 test problems confirm the effectiveness of the approach. Depending on the parametrization, an average reduction of the absolute residuals of up to 64.6% is achieved (aggregated over 100 test problems).

With two-thirds to three-quarters of all companies, family firms are the most common firm type worldwide and employ around 60 percent of all employees, making them of considerable importance for almost all economies. Despite this high practical relevance, academic research took notice of family firms as intriguing research subjects comparatively late. However, the field of family business research has grown eminently over the past two decades and has established itself as a mature research field with a broad thematic scope. In addition to questions relating to corporate governance, family firm succession and the consideration of entrepreneurial families themselves, researchers mainly focused on the impact of family involvement in firms on their financial performance and firm strategy. This dissertation examines the financial performance and capital structure of family firms in various meta-analytical studies. Meta-analysis is a suitable method for summarizing existing empirical findings of a research field as well as identifying relevant moderators of a relationship of interest.
First, the dissertation examines the question whether family firms show better financial performance than non-family firms. A replication and extension of the study by O’Boyle et al. (2012) based on 1,095 primary studies reveals a slightly better performance of family firms compared to non-family firms. Investigating the moderating impact of methodological choices in primary studies, the results show that outperformance holds mainly for large and publicly listed firms and with regard to accounting-based performance measures. Concerning country culture, family firms show better performance in individualistic countries and countries with a low power distance.
Furthermore, this dissertation investigates the sensitivity of family firm performance with regard to business cycle fluctuations. Family firms show a pro-cyclical performance pattern, i.e. their relative financial performance compared to non-family firms is better in economically good times. This effect is particularly pronounced in Anglo-American countries and emerging markets.
In the next step, a meta-analytic structural equation model (MASEM) is used to examine the market valuation of public family firms. In this model, profitability and firm strategic choices are used as mediators. On the one hand, family firm status itself does not have an impact on firms‘ market value. On the other hand, this study finds a positive indirect effect via higher profitability levels and a negative indirect effect via lower R&D intensity. A split consideration of family ownership and management shows that these two effects are mainly driven by family ownership, while family management results in less diversification and internationalization.
Finally, the dissertation examines the capital structure of public family firms. Univariate meta-analyses indicate on average lower leverage ratios in family firms compared to non-family firms. However, there is significant heterogeneity in mean effect sizes across the 45 countries included in the study. The results of a meta-regression reveal that family firms use leverage strategically to secure their controlling position in the firm. While strong creditor protection leads to lower leverage ratios in family firms, strong shareholder protection has the opposite effect.

In this thesis, we consider the solution of high-dimensional optimization problems with an underlying low-rank tensor structure. Due to the exponentially increasing computational complexity in the number of dimensions—the so-called curse of dimensionality—they present a considerable computational challenge and become infeasible even for moderate problem sizes.
Multilinear algebra and tensor numerical methods have a wide range of applications in the fields of data science and scientific computing. Due to the typically large problem sizes in practical settings, efficient methods, which exploit low-rank structures, are essential. In this thesis, we consider an application each in both of these fields.
Tensor completion, or imputation of unknown values in partially known multiway data is an important problem, which appears in statistics, mathematical imaging science and data science. Under the assumption of redundancy in the underlying data, this is a well-defined problem and methods of mathematical optimization can be applied to it.
Due to the fact that tensors of fixed rank form a Riemannian submanifold of the ambient high-dimensional tensor space, Riemannian optimization is a natural framework for these problems, which is both mathematically rigorous and computationally efficient.
We present a novel Riemannian trust-region scheme, which compares favourably with the state of the art on selected application cases and outperforms known methods on some test problems.
Optimization problems governed by partial differential equations form an area of scientific computing which has applications in a variety of areas, ranging from physics to financial mathematics. Due to the inherent high dimensionality of optimization problems arising from discretized differential equations, these problems present computational challenges, especially in the case of three or more dimensions. An even more challenging class of optimization problems has operators of integral instead of differential type in the constraint. These operators are nonlocal, and therefore lead to large, dense discrete systems of equations. We present a novel solution method, based on separation of spatial dimensions and provably low-rank approximation of the nonlocal operator. Our approach allows the solution of multidimensional problems with a complexity which is only slightly larger than linear in the univariate grid size; this improves the state of the art for a particular test problem problem by at least two orders of magnitude.